An Integrated Approach Reveals Regulatory Controls on Bacterial Translation Elongation
نویسندگان
چکیده
Ribosomes elongate at a nonuniform rate during translation. Theoretical models and experiments disagree on the in vivo determinants of elongation rate and the mechanism by which elongation rate affects protein levels. To resolve this conflict, we measured transcriptome-wide ribosome occupancy under multiple conditions and used it to formulate a whole-cell model of translation in E. coli. Our model predicts that elongation rates at most codons during nutrient-rich growth are not limited by the intracellular concentrations of aminoacyl-tRNAs. However, elongation pausing during starvation for single amino acids is highly sensitive to the kinetics of tRNA aminoacylation. We further show that translation abortion upon pausing accounts for the observed ribosome occupancy along mRNAs during starvation. Abortion reduces global protein synthesis, but it enhances the translation of a subset of mRNAs. These results suggest a regulatory role for aminoacylation and abortion during stress, and our study provides an experimentally constrained framework for modeling translation.
منابع مشابه
Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system
Bacterial growth significantly depends on protein synthesis catalyzed by ribosome. Ribosome translation elongation speed is a key factor determining the bacterial protein synthesis rate. However, existing methods for determining translation elongation speed have limited applications. Here we developed a simple and convenient method for measuring bacterial translation elongation speed based on L...
متن کاملSlowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress
In nature, bacteria frequently experience many adverse conditions, including heat, oxidation, acidity, and hyperosmolarity, which all tend to slow down if not outright stop cell growth. Previous work on bacterial stress mainly focused on understanding gene regulatory responses. Much less is known about how stresses compromise protein synthesis, which is the major driver of cell growth. Here, we...
متن کاملModeling translation elongation dynamics by deep learning reveals new insights into the landscape of ribosome stalling
Translation elongation plays a central role in multiple aspects of protein biogenesis, e.g., differential expression, cotranslational folding and secretion. However, our current understanding on the regulatory mechanisms underlying translation elongation dynamics and the functional roles of ribosome stalling in protein synthesis still remains largely limited. Here, we present a deep learning-ba...
متن کاملRibosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes
The ability to sequence genomes has far outstripped approaches for deciphering the information they encode. Here we present a suite of techniques, based on ribosome profiling (the deep sequencing of ribosome-protected mRNA fragments), to provide genome-wide maps of protein synthesis as well as a pulse-chase strategy for determining rates of translation elongation. We exploit the propensity of h...
متن کاملIt’s All About the IKT Approach: Three Perspectives on an Embedded Research Fellowship; Comment on “CIHR Health System Impact Fellows: Reflections on ‘Driving Change’ Within the Health System”
As a group of Health System Impact (HSI) postdoctoral fellows, Sim and colleagues offer their reflections on ‘driving change’ within the health system and present a framework for understanding the HSI fellow as an embedded researcher. Our commentary offers a different perspective of the fellow’s role by highlighting the integrated knowledge translation (IKT) approach we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 159 شماره
صفحات -
تاریخ انتشار 2014